AEROLOGICAL OBSERVATIONS [Aerological Division, D. M. LITTLE in Charge] By L. P. HARRISON Mean free-air data based on airplane weather and radiometeorograph observations during the month of February 1938 are given in table 1, which includes the basic elements, barometric pressure, temperature, and relative humidity at various standard geometric heights. "Means," which have been computed by the customary method of differences, are not given where there are less than 15 observations at the surface and less than 5 at the standard heights, except those within the layer of monthly vertical range of the tropopause for which 15 observations are also required. (For further details, see January 1938 Monthly Weather Review, Aerological Observations.) Chart I shows that the mean surface temperatures during February were above normal almost over the entire country. A small area including Montana and part of North Dakota and a separate area in northern California had subnormal surface temperatures. Table 1 shows that the mean free-air relative humidities in the vicinity of Nashville, Tenn., Spokane, Wash., and the California coast were relatively high on the whole in comparison to those which prevailed over adjacent land areas. They were relatively low at moderate and higher elevations (1.5–5 kilometers) in the vicinity of Pensacola, Fla. Isobaric charts constructed by use of the mean monthly free-air barometric pressure over the country indicated the location of a statistical center of minimum pressure in the vicinity of Sault Ste. Marie, Mich., and a center of maximum pressure toward the Gulf of Mexico. Table 2 shows the free-air resultant winds based on pilot-balloon observations made near 5 a.m. (seventy-fifth meridian time) during February. The resultant wind directions were generally close to normal over the greater portion of the country, with notable departures near the west coast, the central and southern Plateau regions and the Florida Peninsula. At Oakland and San Diego, Calif., through the stratum from 0.5 to about 2.5 or 3.0 kilometers, mean sea level, the resultant winds were mostly oriented counterclockwise from normal by amounts ranging from about 140° to 70° over the former station and 100° to 40° over the latter. Similarly, at Seattle, Wash., the amounts of counterclockwise orientation were from about 20° to 135°, and at Spokane, Wash., between 1-3 kilometers, mean sea level, they were about 40° to 65°. However at 4 kilometers, over the latter place, the orientation was 55° clockwise. At 2.5 kilometers, mean sea level, over Medford, Oreg., the orientation was counterclockwise about 50°. Thus along the west coast, the northerly components normal during February were this month replaced by southerly components in the lower levels, and westerly components were more pronounced than usual. The resultant directions at Salt Lake City, Utah, and Albuquerque, N. Mex., in the layer 2 to 4 kilometers, mean sea level, were oriented counterclockwise from normal by amounts ranging from 20° to 60°, and 20° to 45°, respectively. Here too the southerly components were more pronounced than generally is the case. At Key West, Fla., the monthly resultant directions were rotated counterclockwise from the normal by amounts which increased from 26° at 0.5 kilometer to 248° at 3 kilometers, mean sea level, so that easterly and northerly components were dominant instead of the more usual southerly and westerly components at moderate elevations; i. e., the air resultant flow was from the Atlantic Ocean rather than from the Gulf of Mexico and the Caribbean Sea as has been the general rule in recent years in this region. The monthly resultant velocities of the free-air winds up to the levels for which data were available were generally in excess of the normal westward of a line running from Vancouver to, say, New Orleans, La., and deficient with respect to the normal eastward of that line, except over the Mississippi and Ohio River valley basin up to 1.5 kilometers, mean sea level, where excesses also prevailed. Most of the departures of resultant velocity from normal fell within the range ±2 meters per second, but in several areas significantly larger departures occurred. In particular, the departures from normal in meters per second at various elevations above sea level were: at 1 kilometer, Oklahoma City, Okla., +3.7, Chicago, Ill., +3.2, Detroit, Mich., -3.8; at 1.5 kilometers, Medford, Oreg., +3.8, Seattle, Wash., +3.2; at 2.0 kilometers, Atlanta, Ga., -3.7; at 2.5 kilometers, Spokane, -4.8, Atlanta, -4.0; at 3.0 kilometers, Spokane, -3.6, Medford, -3.1, Cheyenne, Wyo., -4.0, Pensacola, Fla., -4.6, Boston, Mass. -3.5; at 4 kilometers, Oakland, Calif., +8.1, San Diego, Calif., +4.4, Albuquerque, N. Mex., +4.2, Spokane, -3.6, Pensacola, -3.4; at 5 kilometers, San Diego, +4.8, Albuquerque, +9.4, Atlanta, -5.8. Table 3 shows the maximum free-air wind velocities Table 3 shows the maximum free-air wind velocities and their directions for various sections of the United States during February as determined by pilot balloon observations. The extreme maximum was 61.6 meters per second from the north at 8,600 meters, mean sea level, over Modena, Utah, on February 17. Table 1.—Mean free-air, barometric pressures (P) in mb., temperatures (T) in ° C., and relative humidities (R. H.) in percent, obtained by airplanes or radiometeorographs during February 1938 | | | | | | | | | | | | A | ltitude | (ше | ters) | mean | sea 1 | evel | - | | | | | | | | | | | |---|--|--|--|--|--|--|--|---|---|--|--|---|--|---|---|--|--|--|---|--|--|--|--|--------|---|--|--|---| | Stations | | Su | rface | | | 500 | | | 1,000 | | | 1,500 | · | | 2,000 | | | 2,500 | | | 3,000 | | | 4,000 | | | 5,000 | | | · | Num-
ber of
obs. | P | Т | R.
H. | Р | т | R.
H. | Р | т | R.
H. | P | т | R.
H. | P | т | R.
H. | | Barksdale Field, I La. (52 m) Billings, Mont. 3 (1,090 m) *Boston, Mass. (5 m) *Burbank, Calif. (220 m) Cheyenne, Wyo. (1,873 m) Coco Solo, C. Z. (15 m) El Paso, Tex. (1,194 m) Fargo, N. Dak. (274 m) Kelly Field, Tex. (206 m) Lakehurst, N. J. (39 m) Maxwell Field, Ala. (52 m) Mitchel Field, N. Y. (29 m) Nashville, Tenn. 3 (180 m) Norfolk, Va. (10 m) Oakland, Calif. (20 m) Oklahoma City, Okla. (391 m) Omaha, Nebr. (300 m) Pearl Harbor, T. H. (6 m) Pensacola, Fla. (13 m) Satt Lake City, Utah (1,288 m) Sat Thomas, V. 1. (8 m) Satt Lake City, Utah (1,288 m) Satt Be, Marie, Mich. (221 m) Scott Field, Ill. (135 m) Seattle, Wash. (10 m) Selfridge Field, Mich. (177 m) Spokane, Wash. (597 m) Washington, D. C. (13 m) Wright Field, Ohlo (244 m) Chicago, Ill. (187 m) | 255
226
226
227
227
227
221
200
26
25
25
28
228
228
228
23
24
16
16
24
28
228
228
229
24
24
26
26
27
26
27
27
26
26
26
26
26
26
26
26
26
26
26
26
26 | 1, 010
884
990
998
1, 020
1, 018
1, 001
1, 017
975
985
1, 014
1, 023
1, 018
872
1, 018
1, 005
1, 000
1, 001
1, 025 | 6.88 -23.85 -7.1 -12.7 -0.7 -10.6 -9.0 -4.7 -4.1 -9.8 -4.5 -4.2 -2.9 -1.1 -9.8 | 57 84
777 72 78
86 78 86
85 89 82 72 76 85 80 844 80 84 90 76 | 959
958
958
961
963
963
963
965
963
965
965
963
965
965
961
961
961
961 | 10. 9 -3. 1 9. 7 -11. 9 -13. 0 -10. 6 -11. 2 -13. 0 -14. 5 -14. 5 -16. 0 -17. 10. 0 -17. | 78
68
93
70
62
66
77
64
74
72
83
80
63
83
76
67
85 | 902
903
900
908
904
908
901
905
902
903
909
907
904
893
902
898
907 | -8.1 11.1 -0.9 9.1 -0.0 2.6 5.8 7.1 0.3 18.3 10.7 15.3 -10.6 5.6 2.0 -5.4 -0.9 -0.1 | 76
68
91
76
66
57
76
66
75
58
73
64
67
77
74
56
89
77
61
64
81
87
63 | 851
844
855
849
855
852
853
847
851
852
853
854
850
844
850
843
852
853
854
853
854
855
854
855
855
855
855
855
855
855 | 8.66 -1.8 -4.8 3.8 15.7 10.3 -6.6 9.3 -2.1 7.0 6.4 1.0 1.9 4.6 -10.6 4.3 -2.2 -0.6 -0.2 | 60
74
67
67
86
45
69
64
53
64
53
64
59
59
56
65
66
68
68
68
68
68
68
68
68 | 792
805
797
804
801
892
796
801
796
803
805
805
799
799
799
788
794
792
800 | 0.7 -1.4 13.8 7.77 -5.8 8.8 7.77 -5.8 8.8 -4.1 5.3 30.0 0 5.6 2-0.2 13.7 6.9 9.9 -0.7 1.5 -11.0 2.6 -4.9 -1.1 1 | 62 50
49 56
68 47 67
48 51
65 38 79
62 63
60 49 57
62 78 56 | 748
758
753
742
757
757
758
752
757
747
757
748
750
740
740
744
742
751 | 4.5 6 - 8.1 1 - 1.7 5 - 12.5 5 12.5 5 8 8 3.7 7 - 7.1 1 1 5.9 9 - 2.00 0.4 6 - 6.8 8 - 7.8 2 5 - 3.3 | 46 45 56 46 42 60 65 55 56 42 52 52 56 777 47 | 710
699
704
702
712
708
696
696
712
701
707
707
707
702
712
712
713
703
705
696
696
696
696
701 | 2.9 -8.1 1 -3.6 8.10.2 2.9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 | 51 40
477 544 41
411 339 53
38 59 43
42 222 44
65 52 55
40 47 51
72 | 614
610
618
618
616
630
624
610
628
615
626
622
616
623
617
630
628
631
616
620
613
619
620
613 | 12. 5 | 58 65
555
229
47
57
39
39
31
31
44
35
60
42
44
44
45
53
38
46
47
70
49 | 534
543
540
558
554
554
554
552
547
546
541
557
557
540
546
541
557
546
557
546
557
554
554
554
554
554
554
554
554
554 | 20. 5
-14. 8
-18. 7
0. 1
-12. 0
-7. 8
-21. 2
-10. 1
-13. 2
-17. 7
-13. 0
-19. 5
-0. 2
-7. 7
-3. 2
-7. 8
-14. 3
-14. 6 | 65 53 49 13 43 56 64 41 31 31 31 53 53 54 8 30 16 60 43 68 47 | | | | | | | | | ` | | | · | | Altit | ude | (met | ers) me | an s | ea lev | rel) | | | | | | · | • | | | | | | | | 6,000 | | | 7,000 | | | 8,000 | | | 9,000 | | | 10,000 | | | 11,000 | | | 12,000 | | | 13,000 | | | 14,000 | | | Boston, Mass
Burbank, Calif | | | -27.0
-21.2 | | 403
415 | -33.9
-27.5 | 57
52 | 350
359 | -41.1
-34.2 | 56
52 | 312 | -40 . 5 | 52 | 268 | 48. 9 | | | | | | | | | | | | | | | | | ,
 | ' | • | ' · · | | | LA | re ri | EPO | RT I | or J | ANT | JAR | Y 1938 | · | | | | | | | • | | <u> </u> | | | | | | | | | | | | | | _ | | A | ltitude | (me | ters) | mean | sea l | evel | | | | | | | | | | ····· | | | Stations | | Sui | rface | | | 500 | | | 1,000 | : | | 1,500 | | | 2,000 | | | 2,500 | | | 3,000 | | | 4,000 | | | 5,000 | | | | Num-
ber of
obs. | P | т | R.
H. | Р | Т | R.
H. | P | т | R.
H. | | St. Thomas, V. I. (8 m) | 30 | 1, 018 | 24. 3 | 76 | 962 | 20. 5 | 87 | 907 | 16. 7 | 92 | 854 | 13. 6 | 91 | 805 | 11. 1 | 83 | 758 | 11. 5 | 47 | 713 | 10. 1 | 27 | 632 | 4. 4 | 18 | 559 | -1.8 | 13 | Table 2.—Free-air resultant winds (meters per second) based on pilot-balloon observations made near 5 a. m. (E. S. T.) during February 1938 [Wind from $N=360^{\circ}$, $E=90^{\circ}$, etc.] | Altitude
(meters) | Albu-
querque,
N. Mex.
(1,554 m) | | ie, Ga. | | . Mont. | | Boston,
Mass.
(15 m) | | Cheyenne,
Wyo.
(1,873 m) | | Chicago,
Ill.
(192 m) | | Cincin-
nati, Ohio
(156 m) | | Detroit,
Mich.
(204 m) | | Fargo,
N. Dak.
(283 m) | | Houston,
Tex.
(21 m) | | Key West,
Fla.
(11 m) | | Medford,
Oreg.
(410 m) | | Nashville
Tenn.
(184 m) | | |----------------------|---|--|--|---|--|--|---|--|---------------------------------|--------------------------------------|-----------------------------|---|----------------------------------|-------------------------------|------------------------------|------------------------------|--|---|---|--|-----------------------------|--|--|--|---------------------------------|--------------------------------------| | m. s. l. | Direction | Velocity | Surface | 243
247
246
248
248 | 2. 5
5. 6
9. 2
15. 5
21. 2 | 346
19
273
283
276
279
284
284
284 | 1. 2
0. 7
1. 5
4. 7
5. 4
5. 9
5. 9
9. 8
11. 4 | 259
235
262
275
281
271 | 1. 3
5. 4
5. 3
5. 7
7. 2
8. 9 | 304
290
315
319
309
306
302 | 2.4
7.4
7.6
8.2
11.2
13.9
10.7 | 271
272
266
275
269 | 3. 0
4. 6
6. 5
8. 1
8. 6 | 279 | 0. 3
2. 9
11. 0
10. 5
10. 3 | 289
237
243
251 | 0. 6
3. 4
10. 0
9. 4 | 339
238
236
265 | 1. 0
1. 9
4. 5
8. 0 | 10
339
257
269
285
297
290 | 1. 5
0. 4
3. 7
3. 8
7. 0
10. 3
9. 5 | 234
247
259
297
296
301
286 | 1. 1
0. 8
3. 0
4. 2
6. 9
7. 1
11. 1
13. 1 | 99
96
79
36
13 | 2. 6
6. 6
5. 4
4. 5
3. 1
1. 9
1. 6 | 351
81
148
171
197
206
290 | 0. 2
0. 5
4. 2
7. 0
7. 0
5. 5
1. 1 | 211
216
240
268
272 | 1. 3
4. 9
7. 9
7. 8
6. 7 | ^{*}Observations by radiometeorograph. Stations not so marked have observations by airplane. Observations taken about 4 a. m. 75th meridian time, except by Navy stations along the Pacific coast and Hawaii where they are taken at dawn. Note.—None of the means included in this table are based on less than 15 surface or 5 standard-level observations, except those levels comprised within the layer in which the tropopause occurred, where at least 15 are also required as a basis. Table 2.—Free-air resultant winds (meters per second) based on pilot-balloon observations made near 5 a.m. (E.S. T.) during February 1938—Continued [Wind from $N=360^{\circ}$, $E=90^{\circ}$, etc.] | Altitude | New
N.
(14 | J. | Oakl
Ca
(8 | lif. | Oklai
City,
(402 | Okla. | Om:
Ne
(306 | br. | Pearl
bor, 7
tory o
waii ¹ (| Cerri-
f Ha- | Penss
Fla
(24 | 3.1 | l N | Louis,
Io.
0 m) | Salt City, (1,29 | Lake
Utah
4 m) | San I
Ca
(15 | lif. | Sault
Ma
Mic
(198 | rie,
ch. | Seat
Wa
(14 | sh. | Spok
Wa
(603 | sh. | Wash
ton, I | D. Č. | |----------------------|------------------|---|--|---|--|---|--|--|---|--|--|--|---|---|--|--|--|--|---|---|---|--|---|--|---|--| | (meters)
m. s. l. | Direction | Velocity | Surface 500 | 311 | 2. 5
6. 0
8. 8
10. 9
12. 9
10. 2 | 141
202
229
243
252
256
307
324 | 2.7
2.8
4.8
4.9
4.9
4.3
5.9
12.9 | 262
200
232
250
265
265
267
277 | 0.3
2.4
8.4
7.7
8.9
9.3
8.2
10.7 | 350
333
287
291
295
290
281
255 | 1.8
1.8
5.1
6.2
7.4
9.1
9.8
8.6 | 10
158
199
219
233
266
276
257 | 1. 0
1. 1
1. 3
2. 2
3. 3
3. 6
5. 6
4. 0 | 27
63
298
319
303
296
304
302 | 2.9
2.4
2.6
4.1
5.1
5.2
3.0
5.3 | 237
237
259
279
272
300
285 | 1. 6
4. 4
7. 6
9. 7
10. 1
11. 2
11. 5 | 151
161
181
199
215
224 | 4. 0
5. 0
5. 2
4. 8
5. 5
6. 4 | 75
225
251
197
228
253
256
285
286 | 0. 7
0. 4
0. 7
1. 3
3. 2
4. 1
7. 1
10. 9
10. 3 | 76
93
317
312
321
318
320 | 1. 7
2. 1
3. 1
6. 1
7. 5
8. 6
12. 1 | 133
154
180
184
174
165
154 | 1. 0
3. 5
5. 2
7. 0
4. 9
5. 4
4. 7 | 104
134
204
219
231
219
346 | 1. 1
2. 3
3. 4
4. 1
2. 6
2. 6
2. 0 | 305
289
300
292
291
289
292 | 1. 6
5. 4
7. 3
10. 2
10. 9
12. 5
13. 2 | ¹ Navy stations. Table 3 .- Maximum free-air wind velocities (meters per second), for different sections of the United States based on pilot balloon observations during February 1938 | | | Surface | to 2,500 | mete | ors (m. s. l.) | | Between 2,5 | 00 and 5 | ,000 | meters (m. s. l.) | Above 5,000 meters (m. s. l.) | | | | | | | | |---|---|---|---|---|---|---|-------------|--|---|---|---|--|---------------------------|--|---|--|--|--| | Section | Maximum ve-
locity | Direction | Altitude (m).
m. s. l. | Date | Station | Maximum ve-
locity | Direction | Altitude (m),
m. s. l. | Date | Station | Maximum ve-
locity | Direction | Altitude (m),
m. s. l. | Date | Station | | | | | Northeast 1 East Central 2 Southeast 3 North Central 4 Central 4 South Central 4 South Central 5 Northwest 7 West Central 5 Southwest 9 | 42. 1
40. 8
36. 0
40. 2
42. 2
33. 2
46. 2
37. 0
31. 5 | NNW
NW
WNW
NNW
SSW
SSW
SE
SW | 2, 500
1, 900
1, 560
2, 330
1, 890
1, 390
2, 300
810
1, 180 | 28
28
27
26
6
1
5
9
6 | Kylertown Washington. Charleston. Minneapolis. Moline. Oklahoma City. Medford. Sacramento. Havre. | 52. 1
42. 8
35. 6
42. 8
39. 0
37. 0
40. 2
38. 0
39. 0 | NNW | 2, 950
3, 060
4, 530
3, 610
2, 930
3, 370
5, 000
2, 800
5, 000 | 28
28
28
26
27
5
7
10
4 | Kylertown Greensboro Charleston Fargo Evansville Oklahoma City Boise Sacramento Albuquerque | 33. 2
36. 4
37. 6
38. 0
36. 8
36. 4
46. 0
61. 6
59. 0 | NW
WNW
NW
WNW
WSW
WNW
NNW
NNW | 8,600 | 7
7
1
9
13
25
15
17
17 | Columbus. Knoxville. Key West. Fargo. Wichita. Amarillo. Portland. Modena. Las Vegas. | | | | Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and northern Ohio. Delaware, Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina. South Carolina, Georgia, Florida, and Alabama. Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota. Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri. 6 Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and western Tennessee. 7 Montana, Idaho, Washington, and Oregon. 8 Wyoming, Colorado, Utah, northern Nevada, and northern California. 9 Southern California, southern Nevada, Arizona, New Mexico, and extreme west ## RIVERS AND FLOODS [River and Flood Division, MERRILL BERNARD in Charge] By BENNETT SWENSON Precipitation during February was heavy over most of a wide belt extending from Texas and New Mexico northeastward over the Lake region, and also in nearly all of the Pacific slope area. The relatively heaviest amounts occurred in California and the lower Great Plains where the rainfall was from 200 to 400 percent or more of the normal. On the other hand, in the South Atlantic slope and East Gulf of Mexico drainage area, it was one of the driest months of February of record. The principal floods during February occurred in the rivers in Michigan, southern Wisconsin, and Illinois, the Meramec River in Missouri, the Wabash-White Rivers in Indiana, the White Basin in Missouri and Arkansas, the Arkansas and Red Basins, the St. Francis River in Missouri and Arkansas, the Trinity River in Texas, and in the San Joaquin and Sacramento Rivers in California. St. Lawrence drainage.—Heavy rains in Michigan on February 5 and again on the 12th-13th caused two sharp rises in the Grand and Saginaw River systems and other small streams in southern Michigan. The snow cover was not excessive and did not have an appreciable effect on the flood, but the mild temperature and rain caused the solid ice in the rivers to break up and resulted in ice jams that caused increased overflow. The storm of February 12-13 broke all records for maximum short period rainfall, as well as for the 24-hour period for February at several points. The greatest amount occurred at East Lansing, Mich., where 4.33 inches occurred within 24 hours. This is the greatest of record at that point for the month of February or any winter month, and for any month in the past 33 years. The intensity of the rainfall and presence of ice in the streams produced sudden rises that gave little time for warnings except in the lower portions of the streams. Damages have been estimated as follows: Grand River, \$95,200; Saginaw River, \$22,800; other rivers in southeastern Michigan, \$119,350. Atlantic slope drainage.—A severe local flood occurred in the Mohawk River at Amsterdam, N. Y., on February 7-8. The river rose 10.3 feet in 24 hours on February 6-7 due to moderate rains and high temperatures which caused moderately heavy run-off in the tributaries of the Mohawk River. In the meantime, the ice that had moved out of the Schoharie River on January 25 and had moved slowly